
KB3 TOOL: FEEDBACK ON KNOWLEDGE BASES

Marc BOUISSOU, Sibylle HUMBERT, Sabine MUFFAT, and Nathalie VILLATTE
EDF R&D, 1 avenue du général de Gaulle 92141 Clamart cedex France

Summary
This paper shows the diversity of the applications in which the KB3 program can be used, thanks to an approach that capitalises on
modelling work in knowledge bases. Using concrete examples, it also highlights the advantages this approach has for applications, together
with difficulties and prospects for development.

Feedback on the development of knowledge bases has served to identify a number of directions in which progress can be made and which
orient future development. The principal orientations include development of a knowledge-base editor and implementation of an organisation
set-up and tools to facilitate sharing of feedback by different developers of knowledge bases.

INTRODUCTION

In order to improve the quality, rapidity, and accessibility of
dependability studies, Electricité de France (EDF) developed the
KB3 program [1]. KB3 automatically builds reliability models of the
structural type (fault trees or systems of Boolean equations) or
behavioural type (Markov graphs, Monte Carlo simulation models,
etc.) for studying a system on the basis of a graphic description of
the system layout, a description of system missions, and a
generic knowledge base (kb).
To carry out dependability studies with KB3, a knowledge base [2]
adapted to the problems involved in the studies to be carried out
is needed. Such a knowledge base must contain a generic
description of the different kinds of components that might be
encountered in the studies (description of possible component
failure modes and of their consequences on the system). This
single generic description is independent of the topology of a
given system and can therefore be used for all system studies
involving the problems dealt with. The KB3 knowledge bases are
written in Figaro, a special language [3] developed by EDF.
For 10 years now, KB3 has been used in a great many
operational applications, and has consequently participated in the
development of a very wide range of knowledge bases to meet
the requirements of those applications.

In this paper we will first give a general introduction to the
Figaro language and its power, backing it up with examples.
We will also indicate the range of possible applications. We
will then present a list of questions that must be asked
before a knowledge base is built. This list was drawn up on
the strength of feedback from the use of KB3.

General presentation of the Figaro language

The Figaro language [3] is a very general modelling language with
the following objectives:
• provide an appropriate formalism for developing knowledge

bases (with generic descriptions of components)
• be more general than all the usual reliability models
• find the best trade-off between modelling power (or generality)

and possibilities for the processing of models
• be as legible as possible
• be easily associated with graphic representations.

The following presentation is not intended to give all the details of
the language syntax, but rather to give the minimum necessary to
introduce the two levels of the language - order 1 and order 0 -
and the relations between them. A formal definition of the
semantics of the order 0 language is given in article [4], published
in the same conference proceedings as this paper.
NB: The keywords of the Figaro language are in upper-case
letters. To help distinguish them from all other elements in the
following examples, all other words will be in lower-case letters.

Apart from some global information (such as the declaration of
the order of steps - cf. [4]), a knowledge base contains generic
models (introduced by the keyword CLASS) whose instances
can be used in a wide variety of assemblies entered by the user
by means of graphic interfaces. Each class contains the following
set of fields, all of which - except for the class declaration - are
optional:

CLASS t KIND_OF t1 t2 ;
INTERFACE i1 KIND t1 CARDINAL 1 TO INFINITY ;
 i2 KIND t2 ;
CONSTANT c1 DEFAULT { constant expression (Boolean,

 numeric, character string) };
DIST_PARAMETER p1 DEFAULT {constant numeric expression};
FAILURE p1 LABEL "first failure mode of %OBJECT" ;
 p2 ;

EFFECT e1 LABEL "first effect of %OBJECT";
 e2 ;

ATTRIBUTE a1 DOMAIN BOOLEAN DEFAULT FALSE;
a2 DOMAIN 'value1' 'value2' 'value3'
 DEFAULT 'value1';

OCCURRENCE
 { occurrence rules }
INTERACTION
 { interaction rules }

Each class may additionally contain a few utility fields for
specifying the elements which can be viewed and/or modified via
the graphic interface, but no more.

A class therefore clearly consists of two parts:
⇒ a purely static and declarative part :
• declaration of the name of the class and of the class(es)

whose characteristics it has inherited,
• declaration of interfaces (classes with which the class

concerned will interact, possibly with constraints on the
number of objects authorised for each interface),

• constant characteristics,
• three categories of state variables, with their initial values.

The possibility of declaring state variables as FAILURE or
EFFECT serves two purposes: to provide a writing shortcut to
avoid having rules written in a more complicated manner, and
to use concepts that “say something” to reliability specialists
(EFFECT = component failure mode associated with loss of
one of the main functions of that component). There is no
basic difference between these categories of state variables
(which are Boolean variables) and ATTRIBUTES, which are
the most general category. ATTRIBUTES can be of four
types: BOOLEAN, INTEGER, REAL, or enumerated (like a2
in the example above) types.

⇒ a dynamic part : the occurrence and interaction rules
describing the behaviour of the class. The occurrence rules
describe elementary events with the conditions governing how
they are triggered and the associated probability distributions.
The purpose of the interaction rules is to propagate the
effects that are the immediate and certain consequences of

an event in the system [4]. These rules often make use of
quantifiers in order to be valid irrespective of the content of
sets of objects defined by the interfaces; some examples are
given below.

 When the graphic interface associated with a knowledge base is
defined, a class can be associated equally well with an icon as
with a link. This means that a link could be a complex object with
rules, and not a simple “tube” conveying information from one end
to another.

 Once the architecture of a system has been graphically entered,
the man-machine interface translates it into a list of objects
described in Figaro language.
 For example, the diagram below (Figure 1) could correspond to
the following description in Figaro language:

OBJECT v1 IS_A valve ;
OBJECT v2 IS_A valve ;
OBJECT v3 IS_A valve ;
 DIST_PARAMETER lambda = 1.E-3;
 INTERFACE
 upline = v1, v2 ;

v1

v3

v2

 Figure 1: Architecture of a system

 Nothing is specified for objects v1 and v2, which means that their
upline interface is empty, and that their probability distribution
parameter ‘lambda’ takes the value defined in the knowledge
base.
 On the other hand, v3 has two objects in its upline interface—v1
and v2—and the user has overwritten the ‘lambda’ value with
1.E-3.

 The set "knowledge base + list of parametered objects" is a
complete model in order 1 Figaro language for a given system.
This model is very concise, but it would be very complex to use it
directly, and not all the recommended checks could be run on it.
For this reason, prior to any processing, this model is fully
instantiated in order 0 Figaro, a very simple sub-language of order
1 Figaro which is particularly suitable for description of the
behaviour of a particular system, and which enables all
consistency checks to be run (cf. [4]) and effective processing to
be carried out.

 This instantiation procedure comprises the following operations:
• application of inheritance and overwriting rules to every object

in the system,
• elimination of the quantifiers in the rules. This is made

possible by the fact that quantifiers concern sets that are
known by the list of their elements: the interfaces of objects.
The rules obtained will generally be simpler (and in some
cases they are simply eliminated!), but also more numerous
since they will be repeated as many times as there are
objects of a given class.

 Here is a complete example of a micro knowledge base and of a
system description, with the version in order 1 and extracts of it in
order 0. This knowledge base is used to model the propagation of
a flow initiated by sources in a network of any topology (Figure 2)
whose nodes and edges (which can be mono-directional or bi-
directional) have a gamma_unavail probability of being
unavailable.

 Knowledge base:

CLASS component ;
FAILURE unavailability ;
DIST_PARAMETER gamma_unavail DEFAULT 0.00005;
EFFECT linked

LABEL "%OBJECT connected to a source" ;
ATTRIBUTE tested_unavail DOMAIN BOOLEAN

DEFAULT FALSE ;

OCCURRENCE
 IF NOT tested_unavail
 MAY_OCCUR
 FAULT unavailability
 DIST INS (gamma_unavail)
 INDUCING tested_unavail <-- TRUE
 OR_ELSE TRANSITION availability
 INDUCING tested_unavail <-- TRUE ;
(*--*)
CLASS node KIND_OF component ;
CONSTANT
 function DOMAIN 'source' 'consumer' 'intermediary'
 DEFAULT 'intermediary' ;
INTERACTION
IF WORKING AND function = 'source' THEN linked;
(*--*)
CLASS mono_dir_edge KIND_OF component ;
INTERFACE
 origin KIND node CARDINAL 1 ;
 target KIND node CARDINAL 1 ;
INTERACTION
 IF WORKING AND linked OF origin THEN linked OF target;
(*--*)
CLASS bi_dir_edge KIND_OF component ;
INTERFACE
 end KIND node CARDINAL 2 ;
INTERACTION
 IF WORKING
 AND (THERE_EXISTS x AN end SUCH_THAT linked OF x)
 AND (FOR_ANY x AN end WE_HAVE WORKING OF x)
 THEN FOR_ALL y AN end DO linked OF y ;

 System description (graphical and in Figaro language):

 Figure 2: A network with 6 components

OBJECT n1 IS_A node ;
OBJECT n2 IS_A node ;
OBJECT source IS_A node ;
 CONSTANT function = 'source';

OBJECT a1 IS_A mono_dir_edge ;
 INTERFACE origin = source ;
 target = n1 ;

OBJECT a2 IS_A mono_dir_edge ;
 INTERFACE origin = source ;

 target = n2 ;

OBJECT a3 IS_A bi_dir_edge ;
 INTERFACE end = n1 n2 ;

 In the order 1 description, the two classes of edges clearly show
that depending on the cardinality of the sets that make up the
interfaces, it is possible for a rule to refer directly to the sole
object that is in the interface (case of a mono-directional edge) or
to make use of a quantified expression which will be valid
irrespective of the number of objects declared in the interface
(case of a bi-directional edge). The latter case is interesting in
that it illustrates the main basic constructs of the order 1 Figaro
language: existential quantifier, universal quantifier, and “loop” on
the conclusion side of the rule.

 Below, to illustrate the instantiation procedure, is object a3 taken
from the order 0 description:

OBJECT a3 IS_A bi_dir_edge ;
INTERFACE end = n1 n2 ;

ATTRIBUTE tested_unavail DOMAIN BOOLEAN = FALSE ;
(* FAILURE *) unavailability DOMAIN BOOLEAN = FALSE ;
EFFECT linked LABEL "%OBJECT connected to a source" ;
DIST_PARAMETER
gamma_unavail = 5e-005 ;

OCCURRENCE
xx1
 IF (tested_unavail OF a3 = FALSE) AND
 (unavailability OF a3 = FALSE)
 MAY_OCCUR
 FAULT unavailability
 DIST INS (gamma_unavail OF a3)
 INDUCING unavailability OF a3 <--TRUE,

 tested_unavail OF a3 <-- TRUE
 OR_ELSE
 TRANSITION availability
 INDUCING tested_unavail OF a3 <-- TRUE ;

INTERACTION
xx4
 STEP default_step
 IF ((((unavailability OF a3 = FALSE))) AND ((linked OF n1 =
TRUE) OR (linked OF n2 = TRUE)))
 AND ((((unavailability OF n1 = FALSE))) AND ((
(unavailability OF n2 = FALSE))))
 THEN linked OF n1 <-- TRUE , linked OF n2 <-- TRUE ;

 To complete this quick overview of the Figaro language, here are
two examples demonstrating how very flexible it makes modelling.

 Example 1: definition of the semantics of the "transition"

object of a Petri net

 In a “knowledge base” whose classes are the graphic objects of a
Petri net, the semantics of transitions (in the Petri-net sense)
have to be defined in Figaro language. The purpose of this kb is
to enable the user to work with Petri-nets while having access to
all the generic functions of KB3 such as interactive simulation, the
search for sequences leading to undesirable states by FigSeq,
management of variants of a model, etc.
 In this example, a state variable is accessed by double indexing
through the interfaces. More precisely, in the following rule (it is
part of the description of the transition), one speaks of marking of
object x (a place) declared in the “origin” interface of an arc which
is itself declared in the “input_arc” interface of the transition. This
rule remains very legible despite the complexity of what it
expresses.

IF(FOR_ANY x AN input_arc WE_HAVE

marking (origin OF x) >= weight OF x) AND
 (FOR_ANY y AN inhibition_arc WE_HAVE

marking (origin OF y) < weight of y)
MAY_OCCUR
 TRANSITION firing DIST EXP (lambda)

 INDUCING
 (FOR_ALL x AN input_arc DO
marking (origin OF x) <-- marking (origin OF x) - weight OF x),
 (FOR_ALL x AN output_arc DO
marking (target OF x) <-- marking (target OF x) + weight OF x);

 Example 2: rule with nested quantifiers

 Constructions using quantifiers can be nested easily by using
mute variables, making it possible to write expressions describing
complex logics in a generic manner, as in the following example.

Rule_R1
IF THERE_EXISTS e1 AN input SUCH_THAT

(FOR_ANY x AN input OF e1 WE_HAVE inhibited(e1))
AND THERE_EXISTS e2 AN input VERIFYING e2<>e1

SUCH_THAT (FOR_ANY x AN input OF e2 WE_HAVE
masked(e2))

 THEN blockage ;

 Once it has been instantiated at order 0, this single rule will
generate rules whose complexity rapidly increases with the
number of component inputs, as can be seen below (Figure 3).

inhibited(i1) and inhibited(i2) and masked(i3)
or
inhibited(i3) and masked(i1) and masked(i2)

inhibited(i1) and masked(i2)
or
inhibited(i1) and masked(i3)
or
inhibited(i2) and masked(i3)
or

...

rule deletedci e1

i1

i2

i3

c

e2

e1

ci2 e2

i1 e1

i3 e3

 Figure 3: Instanciation of Rule_R1 on various topologies

 In what follows we present the various categories of knowledge
bases developed by EDF to meet the requirements of different
applications, and also the “right” questions that should be asked
when a knowledge base is being designed.

 Presentation of different knowledge bases

 The purpose of this article is to make feedback from the
knowledge bases developed by EDF since 1986 available to the
world community of reliability specialists. The first work done in
this respect consisted in surveying and grouping these knowledge
bases in accordance with their source and purpose. We then
drew up a number of pertinent questions to facilitate the work of
knowledge base designers.

 Categories of knowledge bases

 The answer to “Why develop a knowledge base?” helps
determine the category that a kb belongs to. It may have to be
developed because of a specific project requiring several studies
of the same type (Probabilistic Safety Analyses (PSA) for nuclear
power plants, for instance) to be carried out, or simply to have a
conventional formalism that reliability specialists are familiar with
and/or which is still close to the R&D stage. These knowledge
bases are then necessarily one of the following three categories:

 yy Abstract

knowledge
base

 These knowledge bases, in which classes
represent abstract objects (such as the
places and transitions of Petri nets), are
available to all KB3 users since they are
independent of the domain of
application.

 yy Dedicated kb Their function is to meet the requirements
of industrial applications.

 yy R&D test kb Their function is to serve as a support for
thinking on unsolved problems.

 The first category includes all the known reliability models in the
field of dependability: an expert in this field can easily model his
problem with Markov graphs, Petri nets, fault trees, or reliability
diagrams … if the system and requirements so allow.

 These standard formalisms can meet a great many of the
requirements of system studies but require prior user knowledge
of the modelling concepts.

 As its name indicates, the second category is dedicated to the
specific requirements of special applications which cannot be met
by the first category. EDF has had plenty of opportunity to meet
requirements concerning:
• within EDF:

 - Probabilistic Safety Analyses (electrical or hydraulic
systems [2]),
 - Evaluation of instrumentation and control systems,
 - At the design stage, assessment of availability risks
for power plants (combined-cycle plants, nuclear plants,
etc.)
 - Substations and transmission lines,
 - Availability of telecoms networks, etc.

• outside the EDF
 - on-board electronics (in collaboration with Renault [7]),
 - assessment of the reliability of a plan for putting a
power grid back on-line after a blackout, etc.

 The third category includes the knowledge bases written in-house
to answer basic questions which have not yet been solved. They
are used to run modelling and feasibility tests. One of the
problems raised, for example, is modelling of two-way flows with a
view to producing fault trees.

 Operational feedback on knowledge
bases

 As a result of more than ten years of experience, a set of the
“right questions” to be asked when writing a kb has been drawn
up. This kb approach makes it easier to capitalise on reliability
expertise and is a source of constant enrichment and progress in
terms of productivity of studies, traceability, consistency of
studies, etc.

 To effectively benefit from this potential, three essential questions
must be asked when a kb is being designed.

 Question 1: possibility of re-use?

 When a kb is being designed, it is important to refer to the
existing kb and assess to what extent it can be re-used.
 If the future user of the KB3 program and its knowledge base is
not a reliability specialist, it will certainly be necessary to work in
the direction of a dedicated kb. In this case, a check must be
carried out to determine whether an existing kb that meets the
objectives perfectly can be re-used, or whether an existing kb can
be adapted and converted.
 This approach can make for time savings. However, one of the
difficulties lies in writing knowledge bases that are dedicated
while still remaining sufficiently generic for other applications.
 If the users are reliability specialists, it will be necessary to
consider using abstract knowledge bases, if the study allows it, or
otherwise to adopt the above procedure. It is perfectly possible to
model electrical systems with an abstract kb.
 For example, a kb called BDMP (Boolean logic Driven Markov
Processes), the concepts of which are a combination of those of
fault trees and Petri nets, can perfectly well model electrical
systems with their possibilities of reconfiguration. This
requirement arose internally. The existing BDMP knowledge base,
one of the category of abstract bases, was immediately used for
the study in question.

 Question 2: Major objectives of a kb

 Writing a kb requires definition of a number of main objectives:
the type of processing, the quantities to be calculated, the level of
detail, and the skill of users.

 Type of processing

 Processing is an essential criterion in determining the
possibilities a kb will bring to carry out a study. A static study is
based on transformation of a model into a fault tree. Fault-tree
generation is the main function of the KB3 tool. The processing of
trees is then carried out using tools developed outside EDF
(Aralia, Risk Spectrum, etc.). This type of study concerns above
all PSAs and all the models which do not take account of repairs.
The second type of processing for dependability studies concerns
dynamic models. In the best of cases, the fault tree generated
with a dynamic model gives a simplified and approximate view,
but it is generally unusable. There are three categories of
dynamic models: Markovian, non-Markovian using instantaneous
laws1 (INS) and constant-time laws (CT), or non-Markovian using
laws other than INS and CT laws (Table 1). Changes in states,
using a constant-time law, are applied after a deterministic time
and provide a sure result. Table 1 gives the correspondences
between the main typologies of models encountered, what they
are used for, and the associated tools.

 Markovian models are used to explore sequences, based on
order 0 Figaro models generated by KB3. The exploration and
quantification are carried out with a special program: FigSeq
(FIGaro SEQuences) developed by EDF [3]. Non-Markovian
models using only instantaneous and constant-time laws can also
be processed by the FigSeq program, using a suitably adapted
algorithm. The Topase tool used to design VHV substations was
designed principally for this kind of model [5].
 As for non-Markovian models using laws other than INS and CT
laws, EDF currently has no operational tools but has done some
work on the subject. A prototype on Monte-Carlo simulation exists
and deserves to be taken up again and validated [6].
 Starting from these types of models, the tools presented all
enable both qualitative and quantitative studies to be carried out.

 Typology of
models

 Use Potential /
Operational

 Static, unlooped Generation and
processing of
fault trees

 Operational (
 - generation: KB3,
 - processing: Aralia or
Risk Spectrum)

 Static, looped Generation and
processing of
logic equations

 Operational (
 - generation: KB3,
 - processing: Aralia)

 Markovian Generation and
quantification of
sequences

 Operational (FigSeq)

 Neither static nor
Markovian, with
Instantaneous and
Constant-Time laws

 Generation and
quantification of
sequences

 Operational (FigSeq,
Topase)

 Neither static nor
Markovian, with
other laws than INS
and CT laws

 Monte Carlo
simulation

 Potential

 Table 1: Typology of models and possible uses

 To illustrate the possible consequences the choice of processing
can have on how knowledge bases are written, we give the

1 We use "law" as a synonym for "probability distribution"

example of a normal/standby system (Figure 4) which can be
modelled “exactly” dynamically, and approximately with a static
approach.

 Figure 4: Normal/Standby system

 If the user wants to be able to conduct two types of processing
with a single model, he can use a global constant authorising or
prohibiting certain rules, depending on its value. For example, for
the type of system modelled above, the following order 1
description could be used for the standby blocks:

CLASS standby_block KIND_OF block ;
ATTRIBUTE
 state DEFAULT ‘off’;
INTERFACE
(* a standby_block is started up when all the blocks declared in
the interface " backed_up " are broken down. *)
 backed_up KIND block CARDINAL 1 TO INFINITY ;

INTERACTION
startup
 IF (state = 'off') AND (class_of_model = ’dynamic’) AND
 (FOR_ANY x A backed_up WE_HAVE
 (NOT fulfilled_function(x)))
 THEN state <-- 'startup';

shutdown
 IF (class_of_model = ’dynamic’) AND
 (state = 'on’ OR state = 'startup') AND
 (THERE_EXISTS x A backed_up SUCH_THAT
 fulfilled_function(x))
 THEN state <-- 'off';

 In this example, the two rules (startup and shutdown) describing
the dependency of the standby block on the backed-up blocks it
has to replace completely disappear at order 0 when the user
chooses the value “static” for the class_of_model constant.

 Consequently, when class_of_model = ‘static’, the standby block
designated bs1 is either overlooked or deemed to be in a state of
active redundancy, depending on whether its initial state is “off” or
“on”. With a dynamic model, these two rules are involved in
triggering changes in the state of the standby block, in
accordance with the state of the normal block.

 Parameters to be calculated: reliability, availability,
productivity

 The ultimate objective of any dependability study is to obtain
reliability parameters such as reliability itself or availability. It is
therefore important to inform the user of the calculation capacity
of the kb. Concealed behind this criterion are some totally
different orientations in the design of the kb. This difference will
be illustrated by two knowledge bases, one leaning towards
“reliability calculation” and one towards “availability calculation”,
but both of them modelling electrical systems.
 “Elec” is a kb for electrical systems that generates fault trees and
can carry out reliability calculations. “ElecD” is a kb devoted to
studying the availability of electrical systems. To enable
availability to be studied, we began with the Elec base and made
the necessary adaptations. The modifications chiefly concern

introduction of:
• repair times,
• management of the startup time of a plant as a whole, after

unscheduled outage,
• request rates per time unit, to calculate equivalent exponential

failure rates for components that may fail when their startup is
requested.

Level of detail

The design of a knowledge base is often linked beforehand to
generic functional analysis and Failure Modes and Effects
Analysis of systems. This serves to define the level of detail
necessary for proper transcription of the behaviour of the system.
The important thing is to set a level of analysis.
Experience shows that assessment of this level depends on two
things: the complexity of generic models and the availability of the
reliability data.
It is important to adapt the level of detail according to the
processing capacities of the tools. In addition, modelling with a
high level of detail does not necessarily ensure better results, but
it does result in exponential growth in the volume of results to be
analysed. This approach might not be pertinent in terms of
analysis of the results and is likely to be less interesting than first
thought.
Another constraint involved in the level of detail is the availability
of reliability data. Some fields, such as the nuclear power
industry, benefit from operational feedback and consequently
from usable reliability data. On the other hand, the electrical
industry, which is constantly evolving with new technologies,
cannot benefit from operational feedback to determine reliability
data. This factor alone therefore limits the level of detail to be
used for some descriptions.

Usable by people who are not reliability specialists

Designing a kb that can be used by people other than reliability
specialists implies the development of a “dedicated” kb enabling
data to be entered graphically in a form similar to the diagram of
the system to be studied. For example, with an electricity-oriented
kb, there is no need to be knowledgeable about dependability
theory in order to be able to enter a given electrical system and
quantify its reliability. Therefore, using an “expert” knowledge
base (with reliability expertise and system expertise) enables
people who are not specialists in dependability to carry out
studies themselves, using KB3.
It is advisable for a kb that is to be used by non-specialists to
produce easily legible trees, and to have the possibility of
simulating the system operation interactively. These objectives
are examined next.

Question 3: Secondary objectives of a kb

Level of legibility

Generating fault trees implies carrying out static studies. PSA
studies, for example, required a lot of work on generation in order
to facilitate reading of the fault trees obtained. In fact, the
requirement for good legibility concerns PSA studies above all,
their requirement being simply to introduce pertinent information
at the gates of the tree and thereby to facilitate reading. A new
concept has therefore been introduced: that of the obstruction
block.
An obstruction block groups the components whose obstruction
has the same consequences on propagation of flow in the
system. They are essential to the construction of the tree since it
is through them that the kb propagates flow. Obstruction blocks
are built automatically before each tree is generated. The
algorithm which calculates them uses the interfaces of
components and the nodes of the system.

To illustrate this concept of the obstruction block, we will take an
example of modelling of a hydraulic system (Figure 5). In this

model, the tank feeds two lines, each of which has a valve and a
pump. The undesirable event defined for generation of the tree is
absence of fluid at node S.

The left-hand fault tree was generated from the hydraulic system
using the algorithm for construction of obstruction blocks. In the
right-hand fault tree, which represents the same logic, but without
obstruction blocks, the same undesirable event is defined by a
cascaded description of faults. In the first tree, the events
explaining the obstruction of a block are presented as the tines of
a rake, while without obstruction blocks the gates are cascaded,
breaking up the information.

Using the different blocks defined by the algorithm, all the gates
or events of the tree, except for the leaves corresponding to basic
events, have information stating which block they belong to.

tank

valve pump

no fluid in block
1

tank

pump

 tank
operational

failure

no fluid at S no fluid at S

S

 obstruction in
block 1

valve left
closed

pump obstruction

valve

Figure 5: Hydraulic flow diagram for a system with fault tree
generated with, then without, obstruction blocks

Interactive simulation

KB3 contains an interactive simulator. In any state of the system
studied, it gives the user a list of all the possible events (faults or
repairs) in a Simulation window.
To help the user follow the behaviour of the system when he
chooses an event, display options (colour change for components
or links, display of different states on components: open, closed,
etc.) can be parametered in the kb right from the design stage.
These options enable the user to observe directly (interactively)
the consequences of the choices he has made regarding the
state of components.
Interactive simulation corresponds to processing of the rules in
the kb with forward chaining, i.e. according to the semantics
defined in [4].
But a user does not always have to carry out dynamic studies. In
the case of static studies involving generation of fault trees, the
simulation should not be taken at face value.

The simulator could lead the user to believe that his tree takes
account of dynamic aspects when that is in fact totally false. The
greatest of care must therefore be taken when dealing with the
information provided by the simulator in static studies.

Conclusion and prospects

We have first shown that the Figaro modelling language
developed by EDF can be used to write the knowledge bases that
are essential for describing a physical system in the KB3
program, with a formalism close to spoken language.

Then, operating feedback on the design of knowledge bases has
enabled us to define “the right questions” to be asked. This
approach guarantees the relevance and satisfactory completion of
the work of designers, but is not enough in itself.

Further progress must be made to transform this set of questions
into methods, and then to formalise those methods of design and
updating of knowledge bases more precisely, and to develop the
associated tools.

The main objectives are to:
- help designers control information,
- facilitate updating of knowledge bases, some of which

might have a very long service lifetime,
- facilitate management of versions of the kb, to ensure

perfect consistency and traceability between the different
knowledge bases written,

- facilitate access to knowledge bases by “intermediate”
users who are able to make “slight” changes to them.

Bibliography

[1] M. PILLIERE, P.MOUTTAPA, N. VILLATTE, I. RENAULT,
“KB3: Computer Program for Automatic Generation of Fault
Trees”, RAMS’99, Washington (U.S.), January 99.

[2] N. VILLATTE, M. BANNELIER, “EXPRESS, a Knowledge-
Based System for Automating Reliability Studies of
Thermohydraulic Systems in Power Plants”, ISAP’94, Montpellier,
September 97.

[3] M. BOUISSOU, N. VILLATTE, H. BOUHADANA,
M. BANNELIER, “Knowledge Modeling and Reliability Processing:
Presentation of the FIGARO Language and Associated Tools”,
SAFECOMP’91, Trondheim, October 91.

[4] M. BOUISSOU, J.-C. HOUDEBINE, “Inconsistency detection
in KB3 models”, ESREL’02, Lyon, March 2002.

[5] M. BULOT, I. RENAULT, “Reliability Studies for High Voltage
Substations using a Knowledge Base: TOPASE Project Concepts
and Applications”, EDF internal report 96NR00101, ISSN 1161-
0581, 1996.

[6] M. BOUISSOU, J. COLLET, J.-P. SIGNORET, D. EHRET,
“Jessica: a new tool for Monte-Carlo simulation”, European Safety
and Reliability Conference, Copenhagen, June 1992.

[7] T. GAUDRE, M. BOUISSOU, P. CHAUSSIS, P. NONCLERCQ
"Application de l’outil KB3-IFAST (ARALIA inside) de génération
automatique d’Arbres de Défaillances à un système électronique
embarqué automobile", 2ème Conférence Annuelle d’Ingénierie
Système, Toulouse, Juin 2001.

