
INCONSISTENCY DETECTION IN KB3 MODELS

Marc Bouissou
EDF R&D

1, avenue du Général De Gaulle
92141 Clamart Cedex FRANCE

Marc.Bouissou@edf.fr
++33 1 4765 5507

Jean-Christophe Houdebine
Ariste

25-27, avenue de la Division Leclerc
92160 Antony FRANCE

Ariste@wanadoo.fr
++33 1 4674 5410

Summary

KB3 is a tool based on the Figaro object-oriented modelling language. Thanks to the definition of knowledge bases written in this language,
KB3 enables a quick graphical input of system models, from which the tool is able to automatically generate reliability models such as fault
trees and Markov graphs. Since the Figaro language allows the construction of models showing a very complex dynamic behaviour, it is
important to formally define the semantics of this language, and to address the inconsistency problems that may be encountered in the
construction of knowledge bases. In this article, we give a formal definition of the order-0 Figaro language, a simple Figaro sub-language
which is the basis of all models processing. We give a typology of inconsistencies that can appear in a model, and show how some of them
are properly detected by syntactical checks, and others can be eliminated through the use of some simple rules for building a knowledge
base.

INTRODUCTION

EDF R&D developed KB3 for automatic generation of reliability
models such as fault trees and Markov graphs. KB3 uses the
Figaro modelling language [1], [2] created especially to help
capitalise on knowledge on categories of systems with common
operational characteristics and failure modes. Using knowledge
bases written in this language, it is possible to very quickly enter a
graphic description of a system, and to have KB3 automatically
generate conventional reliability models.

Certain KB3 knowledge bases are extremely complex: the most
complex, that of the Topase tool dedicated to the study of VHV
substations [4], has 27,000 lines of Figaro language. Therefore, it
is felt to be increasingly necessary to ensure that they do indeed
what the author intended, or to at least design a tool that will warn
the designer that independently of its intended objectives,
his knowledge base has undesirable properties that we refer
to as «inconsistencies». These undesirable properties can be of
several kinds: contradictions, unbounded numerical values,
looped definitions (A defined in terms of B, and vice versa) that
cannot be solved, divisions by zero, underflow or overflow in the
calculation of real numbers, etc.

The objective of this article is to describe the principles of
methods for either ensuring the consistency of knowledge
bases as they are built, or for detecting any inconsistency
they might contain. As a rule, i.e. for knowledge bases not built
in the manner recommended here, it is impossible to demonstrate
consistency. This is hardly surprising given that the Figaro
language combines all the possibilities of the logic of proposals,
of calculation with real numbers, and of automata.

When it is not possible to prove the consistency of a knowledge
base (kb), it may still be possible to process system models case
by case. This makes it possible to use imperfect knowledge
bases, by checking that the models built for each system do not
involve the defects of the base. A typical example is that of
knowledge bases that ensure the consistency of models only if
the topology of the systems studied is not looped.

The Figaro language has two levels: "order 1" and "order 0". The
order-0 language is a very simple sub-language of the order-1
language and can only be used for the description of specific
systems. It is the order-1 language that is used in knowledge
bases, for it serves to write generic models of components which
will be instantiated on the system architectures entered by the
user.
Article [3], published in the Proceedings of the same
Conference as this paper, presents the syntax of the Figaro

language (with both levels) and some examples of models.

The present article is broken down as follows: it starts by
exploring the relationships between order-1 and order-0
consistency. The relationships determined serve to limit
demonstration work at order 0. There follows a formal definition of
the order-0 Figaro language which is used to draw up a typology
of the kinds of inconsistency an order-0 Figaro model might
contain. A set of rules for building a knowledge base so as to
avoid the identified kinds of inconsistency is then given. For the
most difficult of these rules —the arrangement of «steps» in the
model— we outline a tool that helps the user do just this. Towards
the end, the paper looks at cases of demonstrations of
consistency which can be carried out only for the order-0
language, i.e. case by case on system models entered by the
user.

RELATIONSHIP BETWEEN ORDER-1
AND ORDER-0 INCONSISTENCY

Demonstrating (in so far as it is actually possible) the absence of
inconsistency in a knowledge base involves showing that:
irrespective of the system (complying with the constraints
described in the kb) entered by the user, the model in order-0
Figaro language generated with the system and the
knowledge base will contain no inconsistencies.

Inconsistency can be found either at the instantiation phase
(transformation of the order-1 model into an order-0 model) or in
the phase when the model is run (when it is used to simulate the
system modelled). Any instantiation problems can be detected
exhaustively by the syntactical checks described below which
are carried out on the knowledge base.

Syntactical checks

A knowledge base is a collection of classes of objects described
in order-1 Figaro language (i.e. serving to describe generic
knowledge, particularly by means of operators suitable for
manipulation of sets) that the kb user can assemble in an infinite
number of ways within system models.
This freedom is nevertheless restricted by the data given in the
KIND and CARDINALITY facets of the interfaces declared in the
knowledge base (e.g. upline of an electrical component there can
be only more electrical components, in numbers ranging from 0
to N).
With this information, the syntactical knowledge-base check
carried out by KB3 ensures that no problem of the type «access
to non-existent variable requested» (e.g. the pressure of an

electrical component) can be detected during the instantiation of a
model.
This syntactical check is very complex for it must take account of
all the inter-class inheritance rules, and it is of great help for
knowledge-base designers.

Before any model entered by a user can be put to use, KB3
checks that all the constraints defined by the knowledge-base
designer are complied with.
This check can generate error messages of the type «not enough
(too many) objects in interface X of object Y".
Compliance with the classes of objects allowed in a given
interface of a given object is checked by the entry interface; this
interface will allow no errors of this kind.

These checks ensure that the procedure of order-0 instantiation
for a given system, which is systematically carried out prior to any
reliability processing, will be trouble-free.
But that is not enough in itself, of course: this check provides no
protection whatsoever against the types of inconsistency
described in the introduction to this communication.

Behavioural consistency

To precisely define what is meant by ‘behavioural consistency’, a
formal definition of the semantics of the model specifying
behaviour must first be obtained.
The order-1 Figaro language is complex, and it is therefore
difficult to give a formal definition, for it would be unreasonably
lengthy and quite unintelligible. On the other hand, it is possible to
give a simple formal definition of order-0 Figaro language.
Consequently, it is on the basis of such a simple description that
we will show where inconsistency can appear. It will then be
possible to state the rules for knowledge-base construction that
will ensure that any model in order-0 Figaro developed from that
knowledge base is fully coherent.

SEMANTICS OF A FIGARO 0 MODEL

Foreword: in order to keep this presentation simple, the
description will not include the possibility given by Figaro to define
Dirac-type probabilistic distributions that can be used to model
deterministic triggering of events at the end of determined
periods. Nor will we go into details of the temporal behaviour of
the automaton: we will restrict ourselves to defining the states to
which the automaton can evolve from a given state, and whether
the change in state is instantaneous or occurs after a certain time.
These simplifications mean it will not be necessary to define a
schedule, a relatively complex notion that would only make things
more difficult to understand.
The distinction between instantaneous and non-instantaneous or
«tangible» states is a necessity that gives the language sufficient
modelling power: these two types of state are not processed in
the same way, as will be seen in the paragraph defining how the
automaton can evolve from a given state.

Consider L, a set of probability distributions belonging to one of
the following two categories: continuous distributions covering

[]0,+∞ , discrete distributions associating probabilities with a finite

number of modalities.
A model in Figaro 0 language is a tuple (Ξ, O, T, I, σ, Y0, V0)
made up of the following elements:
Ξ is the Cartesian product E E En1 2⊗ ⊗... of the domains of

the components of X, a finite vector of state variables (x1, x2, …
xn) whose value defines the state of the model at instant t. Each
state variable xi can be one of several types: Boolean, integer,
real number, or a so-called «enumerated» variable which can take
values in a finite set Ei. X is in fact the concatenation V, Y of two
vectors, V and Y. V covers the so-called «essential» variables
and Y covers the so-called «deduced» variables.
V0 is the initial value of V, and Y0 is the so-called «re-initialisation»
value of Y. Y is a function of V and of Y0 defined using
function I described below.
T is the set of transition groups of the model. A transition is a
mapping of Ξ into Ξ, which, for any state vector, provides a
correspondence with another state vector, generally obtained by

modifying a small number of essential variables. A transition
group is a couple consisting of a set of so-called «bound»
transitions and one of the probability distributions of L. The
transition group contains a single transition if its distribution is not
of the discrete type. If the distribution is of the discrete type, the
transition group contains as many transitions as the distribution
has modalities. A transition represents a local change in the state
of a component in the system modelled, e.g. occurrence of a
failure mode. A transition group associated with a discrete
distribution models all the possible outcomes of a non-
deterministic process considered to be instantaneous; for
example, the various possible results of throwing dice, or the
choice between component startup and failure to start up.
Through improper use of language, we do not distinguish the
notions of «transition group» and «transition» for groups
containing a single transition. The notion of transition group is an
original feature of the Figaro language not found in all the formal
means of describing non-deterministic automata, starting with
Petri nets. Its importance will be highlighted below, when we
describe how the automaton can evolve from a state for which
several groups of instantaneous transitions can be applied.

O is a mapping of Ξ into P(T). In practice, O is defined by the set

of so-called «occurrence» rules. These rules are used to
associate a set (possibly an empty set) of transition groups to any
state X of the model. The transitions belonging to the groups of
O(X) are said to be enabled in state X.

I is a mapping of Ξ into Ξ , which for any state vector X for which
I is defined gives a corresponding state vector. Function I is in
practice defined by the so-called «interaction» rules of the
Figaro model (and possibly a system of linear equations), and
this function may depend on the order, σ,σ, of the rules.

Function I is defined as the composite function of a finite set of
functions of Ξ into Ξ, designated I0, I1,…IP. In other words, I(X) =
Ip(Ip-1(…I0(X)…)).
The interaction rules of the model are grouped together in so-
called «steps» corresponding to the different functions I1,…IP. As
for I0, it is a special re-initialisation function of the deduced
variables: I0(V, Y) = V, Y0

Inference performed in a step
A deterministic automaton that operates in the same way as a
simple inference engine defines the function corresponding to
each step. {Rk} is the set of rules for a given step (to simplify
notation, we will leave out the step subscript). Rule Rk is a
mapping of Ξ into Ξ , which, for a given state vector X gives the
corresponding state vector Rk(X).
Each rule in practice consists of a condition calculated by a
Boolean function of state X, which triggers it, and of actions,
which are most commonly instructions regarding assignment of
state variables with constant values or values calculated from X.
There is also another type of possible action, for the moment
used only in the Topase knowledge base: solving a system of
linear equations, which can be used to calculate a new value
for X.
The inference engine applies rules (Rk) in cycles arranged in
order σ σ until the same value is obtained for X at the end of
two successive cycles of the rules.

Applying a rule consists in assessing its condition, and if its
condition is true, carrying out the corresponding action(s). In
particular, if the condition is not true, vector X is not modified.
This type of operation of interaction rules provides for substantial
flexibility in modelling, particularly for anything involving
propagation of flows in a system. In a preliminary version of the
Topase tool, it even made it possible to calculate currents and
voltages at any point in an electrical circuit, using Ohm laws,
before the same calculation could be carried out to a higher
performance level by solving a system of linear equations.

Once the various elements of a Figaro 0 model have been
described, it is easy to define the semantics of the Figaro 0
language. These semantics are equivalent to the operation of the
following non-deterministic automaton:

Initialisation:

The user defines an initial incomplete state with the data of V0

(just one constraint: compliance with the domain of V). Then,
X0 = I(V0, Y0), the complete initial state of the model, is calculated.
It should be noted that this way of defining the initial state of the
system makes it possible to solve a certain number of tricky
problems for a complex model, such as the risk of defining an
incoherent state (e.g. with two electrical components connected in
series, where there is no current in one but current in the other),
or the impossibility for the user to define the initial state (this
would be the case, for example, if he had to enter the currents
and voltages at every point in an electrical circuit). Thus, it is easy
for the user to define the initial state, and the results are reliable:
there are few variables to initialise, and their meaning is clear and
easy to determine (like the position of a valve, the number of
components started up at the initial instant, etc.).

Evolution from a given state X:

O(X) is the set of transition groups that are enabled in state X.
• If this set is empty, state X is absorbing.
• If it is reduced to a group containing a single transition t, the

only state the automaton can evolve to from state X is I(t(X)).
• If it contains several transition groups, there are two possible

cases (the following breakdown constitutes a grouping into
subsets of all the possible situations):
• O(X) contains only transitions of continuous

distributions. In this case, state X is said to be
«tangible» and the next state for the automaton will be
I(t(X)), t being any one of the transitions of O(X) (non-
determinism).

• O(X) contains groups G1, G2.., Gn of discrete-law
transitions. State X is then said to be "instantaneous",
and the transitions of continuous distributions are
overlooked. In this case, the next state for the
automaton will be I(t1(t2 …(tk (X))…)), where ti
represents any choice (non-determinism) of transition in
group Gi: ti ∈ Gi. The order of application of the
transitions (in other words, the choice of subscripts for
the groups) is not specified. This can produce
consistency problems which are discussed below.

 TYPOLOGY OF POSSIBLE INCONSISTENCIES

 Once this formalisation of the operation of the "Figaro 0
automaton" has been accepted, it is possible to define what is
meant by inconsistency of a model. Desirable properties are also
defined.

 The order-0 Figaro language can be considered as a sort of
synthesis of the existing concepts in production-rule-based
artificial-intelligence languages and in stochastic Petri nets. It is
therefore natural to take inspiration from the work done in these
two fields to develop methods for consistency checking in the
Figaro language.

 For Petri nets, the properties that can possibly be established
from a net are: the possibility of returning to the initial state from
any other state, the bounded character of marking, the liveness of
transitions (a given transition T is said to be live if, from any state
that can be reached from the initial state, it is still possible to find
a transition firing sequence including transition T), the absence of
an absorbing state, the existence of invariants (linear
combinations of the markings of places that are constant,
irrespective of the evolution of the network) [6], [7].

 These properties of Petri nets are very easily transposed under
Figaro, except those that refer to invariants. They become the
following properties:

- P1: finite character of the state space,
- P2: liveness of transitions (with the same definition

as for Petri nets),
- P3: non-existence of absorbing states,
- P4: possibility of returning to the initial state from

any other state.

 It is important to note that the absence of numerical values in V

guarantees that the set of states that can really be reached by the
model, which is part of Ξ, is finite (the fact that there are
numerical deduced variables does not compromise this property).

 The last two properties are obviously to be sought only when one
wants to model a repairable system, for example in order to
calculate its asymptotic availability.

 In artificial intelligence, three criteria are generally used to validate
a rule base, irrespective of the domain of the base:
• Consistency in the logical sense: you cannot have something

and its opposite at the same time,
• Completeness: there is a solution to any problem, irrespective

of the initial data,
• Pertinence: the base conforms to physical reality (this point is

beyond the scope of this communication).

 Transposition of the notions of consistency and completeness to
a Figaro 0 model requires a little interpretation. In fact, the
following undesirable behaviours can be encountered in the
operation of a Figaro 0 defined automaton:

 - Inc1: Impossibility of calculating I(V0, Y0), or even I(X), X being
the state reached by applying one or more transitions to some
previous state. There is also the case where calculation is
possible but its result depends on the order of the rules. These
problems of completeness and consistency of a rule base were
studied by Electricité de France (EDF) in 1985. The rules for
reliable construction of a kb given in this paper are deduced from
the theorems demonstrated in [5].

 - Inc2: Inconsistency linked to transitions groups enabled at the
same time in a given instantaneous state X. The «physical»
meaning of this situation is the fact that several actions of no
duration (but with random results) are triggered in parallel and
must therefore produce their effects at exactly the same time.
Typically, this can concern requests for simultaneous startup of
several components. Due to the notion of transition groups, there
is no need to explore all possible orders of application of
transitions, but it generally presupposes that the transition groups
are all independent of each other. Independence here means two
things:
- application of a transition of a given group does not call into

question the conditions triggering other transition groups (on
the other hand, it is normal for it to make its own condition
false),

- irrespective of the order of application of transitions, for a
given combination of transitions taken each from a different
group, the same result is obtained for t1(t2 …(tk (X))…).

 One or another of these conditions may possibly not be met, for
special reasons in certain models, but it has to be a deliberate
choice by the user. This is why any tool using the Figaro language
must inform the user of any non-compliance with one of these
conditions in order to warn him against a possible error due to
inadvertence.

 The transition group notion is a great help in modelling because it
allows to handle very neatly the following kind of situation: in a
system having n independent components that are required to
start up at the same instant, it is useless to explore the n!
sequences that lead to the same result (i.e. a given combination
of successes and failures among the 2n existing possibilities). On
the contrary, the Figaro 0 automaton is able to generate directly
these 2n outcomes of the initial instantaneous state. The example
of knowledge base given in [3] is an application of this ability of
the Figaro language.

 - Inc3: To these local inconsistencies can be added a more global
kind of undesirable behaviour, namely infinite linking of a series of
instantaneous transitions, which is possible if a series of
transitions leads back to a state from which the series can be
triggered again. For the moment (to our knowledge), there is no
method for detecting this kind of behaviour before running the
model.

 To complement the above comments, it is probably worth
remarking that it would be absurd to try to demonstrate properties

of consistency combining interaction and occurrence rules: for a
repairable system, it is obviously wholly desirable for there to be
rules that assign TRUE to a failure and, as soon as that is done,
other rules that will assign FALSE to the same failure. It is simply
a matter of ensuring that these operations cannot all take place in
no time, which would result in a situation of the type described in
the preceding paragraph.

 We are now going to detail a number of methods for writing
knowledge bases which, right at the construction step, make it
possible to avoid inconsistencies Inc1 to Inc3 and/or to ensure
that properties P1 to P4 are obtained.

 GRAPH OF DEPENDENCIES BETWEEN VARIABLES

 Some of the methods that will be referred to are based on the
simple concept of the graph of dependencies between variables.
Since this notion is important and has interesting applications
beyond the field of consistency checks, this article devotes some
time to it.
 In a Figaro 0 model, it is said that variable v1 "directly affects
variable v2" in the following two situations:
- When there is an assignment instruction (<-) where v2

appears on the left and v1 on the right (v2 <- v1, for
instance),

- When there is an interaction or occurrence rule in which v1
is involved in the premise and v2 appears in the left-hand
part of an assignment in the conclusion.

 The best way to represent a set of dependency relations between
variables is to use an oriented graph: in a graph, the existence of
a path between two nodes associated to variables represents an
indirect influence.
 When variables are considered from a probabilistic point of view,
they are identified to continuous-time stochastic processes; one
can then talk of stochastic dependence between those processes.
It can be demonstrated (but it is beyond the scope of this article)
that stochastic independence between two process variables is
guaranteed from the moment there is no path between the two
variables in the graph we have just defined.

 This property is extremely useful, for it makes it possible to break
the global model down into sub-models which can be solved
independently. From a qualitative point of view (for model-
checking, for instance), it means that construction of a global
graph of model states can be replaced by a series of much
smaller independent graphs. From a quantitative point of view it
simplifies calculation of the probability of being in a given state for
a state variable by considering only the sub-model containing the
variables that influence the variable concerned.

 Consequently, if one wants to calculate the probabilities of being
in a given state for a state variable, or of being in certain states
for a group of variables, one can start by restricting the model
to the variables that influence this group of variables. The
sub-graph containing only the variables that directly or indirectly
influence the group of variables concerned can be used to define
the minimum sub-model to be solved for that calculation.
 In practice, extracting such a sub-model amounts to eliminating
from the global model any expression containing a reference to a
variable that will disappear. Thus, the rules:
 IF v1 OR v2 THEN v3 ELSE v4;
 IF (v4 AND v5) OR NOT v3 THEN v6;

 will become: IF NOT(v1 OR v2) THEN v4 whenever v4 alone is of
interest.

 In addition, it is interesting to distinguish another type of
subsystem: closely connected components of the graph (ccc),
for they are sub-models that cannot be divided for the purposes of
resolution, for all the variables of a ccc are interdependent.
 From this can be built a "supergraph" whose nodes each
correspond to a ccc. The supergraph necessarily contains no
circuit (if it had one, there would be a bigger ccc than those
identified). Subsequently a resolution technique that starts with
the sources of the supergraph and works towards the ccc of
interest could be used.

 RELIABLE METHODS OF WRITING KNOWLEDGE BASES

 Have a pyramidal dependency graph

 A very reliable method of building a kb is to give the graph of
dependencies between variables a pyramid structure, with a
«supergraph» whose ccc with no incoming arc contain all the
essential variables. Ideally, there should be the smallest possible
number of variables in each root ccc.

 The example of a knowledge base that can be used to describe a
telecommunication network given in [3] is typical. Here we have a
simple three-node network (to simplify things further, it is
assumed the edges have no faults) followed by the graph of
dependencies between variables for this system; in the graph, the
variables that are part of the same ccc are boxed in:

tested_unavail (source)

unavailability(source)

tested_unavail (n1)

unavailability (n1)

tested_unavail (n2)

unavailability (n2)

linked (n1)

linked (n2)

linked(source)

 Figure 1: a network and corresponding dependency graph

 Most of the knowledge bases developed to date generate
pyramidal dependency graphs. This is especially the case of
knowledge bases whose purpose is to produce fault trees. Most
of the essential variables in them are failures, and failures of
different objects are independent of each other.

 A simple and natural way of getting a pyramidal graph is to create
dependencies between essential variables only within classes (i.e.
within objects after instantiation on a particular system) and to
create no dependency link from deduced variables to essential
variables.

 By giving a knowledge base this kind of architecture, it is possible
to demonstrate the absence of inconsistencies of types Inc2 and
Inc3, and the presence of properties P1 to P4 (subject to there
being no type Inc1 inconsistency) by means of very local
reasoning involving just a few occurrence rules of the same class.
 This can be demonstrated at the level of the knowledge base, and
consequently for any system modelled with the knowledge
base.

 Reason by monotonic inference

 The purpose of the construction rule to be described next is to
avoid inconsistencies of type Inc1.
 In reference [5], Hery and Laleuf demonstrated a theorem giving a
sufficient condition for commutative convergence of an inference
carried out like the inference of a step of interaction rules in
Figaro 0 language. An immediate consequence of this theorem is
the following corollary:

 If
• all the actions of rules assign the value TRUE to Boolean

variables that were initialised to FALSE before inference
(generally these are EFFECTs), and

• all the rule premises using these Boolean variables are tests
of the type "a_variable = TRUE",

 the commutative convergence of the inference is guaranteed.

 This framework is very simple, and is used in most knowledge
bases aimed at producing fault trees. It is referred to as the
«monotonic inference», a name derived from the fact that when
a Boolean variable has been set to TRUE, no rule can change
this conclusion. The second condition of the theorem is there to
ensure that no Boolean variable is set to TRUE without due
consideration, before stabilisation of those it depends on.
 The enormous advantage of this theorem is that it is extremely
easy to check (even without tools) its assumptions at the level of
the knowledge base, as can be seen in the example of modelling
of a telecommunication network given in [3]. It is therefore
possible to prove at the knowledge base level that irrespective
of the assembly of classes performed by a user of the
knowledge base, no type Inc1 inconsistency can be created.
This very interesting property has been used in all the operational
knowledge bases used by EDF for safety analysis of nuclear
power plants.

 Thanks to monotonic inference it is possible to model
propagation of flows in looped systems very concisely,
naturally, and without any risk of inconsistency, as can be
seen in the example developed in [3]. In the majority of
conventional formalisms (fault trees, Boolean logic, Petri nets,
model-checking formalisms, etc.), however, this modelling
problem results either in impossibility or in very cumbersome and
illegible expressions, whereas it is constantly encountered in the
study of real systems.

 Use steps to best advantage

 To avoid type Inc1 inconsistencies in situations where monotonic
inference is too restrictive a framework, steps can be used.
 The theorem on commutative convergence in [5], which is more
general than the restricted application given in the preceding
paragraph, shows the importance of having as many so-called
«non-receptive» state variables as possible at inference level.
These are state variables which are modified by absolutely no
action of the rules.
 An efficient means of reducing the number of receptive variables
is of course to reduce the number of rules to be taken into
account. This is precisely what is achieved by breaking things
down into steps. Once the inference corresponding to a given
step is completed, the variables which were receptive for that step
can (possibly) be non-receptive for the following steps.
 Here is a very simple example of how steps are applied: suppose
that you need to write a rule of the type «IF NOT effect1 THEN
effect2". Because of the negation in the condition, this is beyond
the scope of monotonic inference, unless you put the rules acting
on effect1 in a step prior to the step in which the above rule is
applied.

 AUTOMATIC ORDERING OF INTERACTION RULES

 When writing interaction rules, it may be difficult to systematically
implement a breakdown of these rules into steps that ensure the
whole model will work smoothly.
 In general, the knowledge-base designer can easily set up local
sequences of rules or groups of rules, but it is more difficult to
manage all the rules, and even more difficult to add a new rule to
an existing knowledge base.

 To reduce these difficulties, an automatic sequencing tool has
been developed. It assumes that a rule should be used only when
its premises have been stabilised.

 In this framework, the execution order of the rules can be
deduced directly from the graph of dependencies between rules
(presented below), a concept similar to that of the graph of
dependencies between variables.

 Definition of interdependencies between rules

 It is stated that a rule R2 depends on a rule R1 if there is a
variable V, modified by R1, which affects the premises or terms of
calculation of R2.
 In the case of a Figaro 0 model, this definition involves no
difficulty, but the number of rules and variables considered can be
very high, and, given the fact that optimisation has to be
recalculated for each modification of the model (addition or
elimination of an object), the calculation is often too complicated
to be performed again in real time.
 The definition has therefore been adapted to the knowledge
bases, taking account of the possibilities of inheritance between
different classes.
 Elements of different classes are considered to be distinct, even if
they are simply built by parent inheritance: variable V of class T is
considered to be different to variable V of a child of T. It is then
stated that the dependence of a rule R2 on a rule R1 is governed
by the variable V of class T in the following case:
• variable V of class T1, a parent of T, is modified by R1,
• variable V of class T2, a parent of T, is involved in the

premises or terms of calculation of R2.
Classes T, T1, and T2 can be distinct, or coincide.

Ordering of rules

Once the first interdependencies have been built, the
dependencies must be complemented in order to build a partial
order relationship, i.e. a transitive and antisymmetrical
relationship.
Transitivity is obtained by adding the necessary dependencies: if
R3 depends on R2 which depends on R1, a dependency between
R1 and R3 is added.
When the added interdependence relationships ensure the
transitivity of the whole, its antisymmetry must be ascertained: if
R1 depends on R2 and R2 depends on R1, then R1 = R2. It is
obvious that rules cannot simply be merged; antisymmetry is
achieved by grouping rules in steps. The order relationship is no
longer expressed between rules but between steps: a step E1
depends on another step E2 if one of the rules of E1 depends on
a rule of E2. Rules are grouped until the relationship between
steps is antisymmetrical.
Grouping of rules violating the constraint of antisymmetry in a
step can be explained by the fact that these rules depend on each
other. It is therefore necessary to group them together and to run
them together until the result converges. In the extreme case of a
set of entirely interdependent rules, the algorithm results in
creation of a single step containing all the rules.
Once the relationship of partial order between steps has been
established, it can be used directly to determine the order of
execution of steps; independent steps are run first, followed by
the steps depending only on those already taken into account,
and so on until all the steps have been run.

Using the rule-sequencing tool

The sequencing tool can be used either when creating a new
knowledge base or when modifying an existing one.
For a new knowledge base, the algorithm defines the groups of
interdependent rules and thus enables the kb designer to check
the pertinence of those groups with respect to the physical model.
The algorithm can also be used to complete a partial definition of
the rule order. The designer expresses certain obligatory
sequences such as the fact that rule group G1 has to be applied
before group G2, and the algorithm completes the order by
signalling if the predefined sequences cannot be complied with (if
group G1 depends on group G2, for instance).
When the designer has already broken operations down into
steps, it is also possible to subdivide each step to get the
optimum order of execution of rules and to accelerate the
inference process.
The principle of modifying a knowledge base involves adding new
rules outside the steps defined in the knowledge base and letting
the algorithm place the new rules correctly in new steps or
existing steps. The algorithm gives a warning when the new rules
introduce looped dependencies between the existing steps.

DETECTION OF INCONSISTENCIES IN A FIGARO 0 MODEL

Despite everything outlined above, there are of course cases
where nothing can be demonstrated at the level of the knowledge
base since the reliable construction rules are too restrictive to
allow modelling of certain types of systems. It is still possible to
run checks on a given order-0 Figaro model.
Take, for example, the following knowledge base which
determines which nodes are linked to sources in a network of
given topology (NB: this knowledge base is completely
deterministic — the automaton can take only one state: the
complete initial state calculated from the incomplete initial state
chosen by the user):

CLASS component ;
ATTRIBUTE linked DOMAIN BOOLEAN DEFAULT FALSE;

CLASS node SORT_OF component ;
INTERFACE upline KIND component;
INTERACTION
 IF THERE_EXISTS x AN upline

SUCH_THAT linked OF x THEN linked
 ELSE NOT linked;

CLASS source SORT_OF component ;
 INTERACTION
 THEN linked ;

The state variable "linked" is an ATTRIBUTE, not an EFFECT. It
is therefore not reinitialised every time the interaction rules are
run. In a looped topology containing two nodes n1 and n2, where
n1 has n2 in its upline interface, and vice versa, after instantiation
the rules contained in the two nodes are the two assignments
linked (n1) Å linked(n2) and linked(n2) Å linked(n1).
Thus, it can be seen that depending on the initial values chosen
by the user (it is assumed he can be wrong) for linked(n1) and
linked(n2), two states are stable after application of the interaction
rules: that where n1 and n2 are linked, and that where they are
not. In fact, only the second case has a physical significance,
given the absence of a source in the system.

Despite this defect (which could be corrected by simply declaring
"linked" as an EFFECT), this knowledge base can be used in
unlooped topologies; in an unlooped topology, the graph of
dependencies between the different "linked" attributes of the
system is acyclic. The inference will gradually stabilise the values
of different «linked» attributes, working from the sources or root
nodes of the system topology and setting the «linked» attribute to
TRUE for the sources and FALSE for the root nodes, irrespective
of the initial state declared by the user.

More generally, it often happens that when using "equivalence"
rules (IF ... THEN ... ELSE) one has to restrict the use of the
knowledge base to systems whose topology is not looped.

It is therefore far preferable to use monotonic inference
whenever possible, despite the fact that it can make for slightly
less legible knowledge bases, since with it the different conditions
that mean a variable must be set to TRUE can be spread across
different rules.

Another example of inconsistency detection that is only possible
at the level of Figaro 0, and even then only while the model is
running, is detection of type Inc2 inconsistencies.

This type of inconsistency can be easily illustrated by a Petri net
translated into Figaro. Examination of the model would detect
what are called structural conflicts in the network due to the fact
that a place P is an input place of two instantaneous transitions t1
and t2 (cf. [6] or [7]).
But there can be many of these in a model without it being a
problem. It is only when the model is run that some of these
structural conflicts become effective conflicts (cf. [6] or [7]). This
is the case in the example given above, when firing of t1 removes
the tokens used to enable t2, and/or vice versa.

The Figseq tool, which is used to analyse dynamic Figaro models,
detects these conflicts, warns the user that they are there, and
displays the sequence of events that brought the system from its
initial state to that in which the conflict is effective.

CONCLUSION

We have shown that the Figaro modelling language on which the
KB3 tool for automation of dependability studies is based answers
some legitimate questions regarding the consistency of systems
models of increasing complexity.

In particular, by complying with simple rules for building the
knowledge bases used with KB3, it can be ascertained that all
the models built by the users of these bases will be
consistent (including those with looped topologies).

In particular, these principles have been put into practice in the
knowledge bases used by EDF for probabilistic safety analysis
of nuclear power plants. More generally, most of the reliability
and availability studies that have been carried out with KB3 have
involved knowledge bases applying these principles.

When it is impossible to apply them wholly, as is the case for the
very complex Topase knowledge base (27,000 lines of order-1
Figaro language), it is at least possible to use tools for analysing
dependencies between rules which help organise rules as more
easily controllable sub-sets.

And some checks can be carried out on models of particular
systems even if they cannot be carried out at the level of an entire
knowledge base.

REFERENCES

[1] M. BOUISSOU, N. VILLATTE, H. BOUHADANA,
M. BANNELIER

"Knowledge Modeling and Reliability Processing:
Presentation of the Figaro Language and Associated
Tools", SAFECOMP’91, Trondheim, October 1991.

[2] M. PILLIERE, P.MOUTTAPA, N. VILLATTE, I. RENAULT
"KB3 Computer Program for Automatic Generation of Fault
Trees"
 RAMS’99, Washington (U.S.), January 1999.

[3] S. MUFFAT, M. BOUISSOU, S. HUMBERT, N. VILLATTE
"KB3 tool: Feedback on Knowledge Bases"
ESREL 2002, March 2002.

[4] M. BULOT, I. RENAULT
"Reliability Studies for High Voltage Substations using a
Knowledge Base: Topase Project Concepts and
Applications"
EDF internal report 96NR00101, ISSN 1161-0581, 1996.

[5] J.-F. HERY, J.-C. LALEUF
"Cohérence d'une base de connaissances: la convergence
commutative en langage L.R.C."
EDF internal report HT 14/22/85, February 1985.

[6] R. DAVID, H. ALLA
"Du Grafcet aux Réseaux de Petri"
2nd edition, Hermes, 1992.

[7] J. L. PETERSON
"Petri Net Theory and the Modelling of Systems"
Prentice-Hall, Englewood Cliffs, New Jersey, 1981.

