
1 INTRODUCTION  

Conventional, or  "static" fault trees are not at all 
suited for modeling systems in which there are 
strong dependencies between components. The as-
sumption of components independence is precisely 
what makes fault trees so powerful (in terms of size 
of the systems that can be assessed with this 
method), but this assumption is extremely restric-
tive, and may prove to be totally unrealistic and lead 
to grossly erroneous results for some kinds of sys-
tems. 

In order to be able to model component depend-
encies, one has to recur to dynamic models. The 
most popular are Markov processes, because of their 
numerous nice mathematical properties. In practice, 
the direct use of  Markov processes has virtually 
been given up, to be replaced by some higher level 
formalisms that enable the automatic generation of a 
(potentially huge) continuous time Markov chain 
(CTMC). 

Dynamic Fault Trees are one of these formalisms. 
They were introduced by R. Gulati in (Gulati 1996), 
and have led to several implementations in tools de-
veloped by the University of Virginia (Manian et al 
1998), and, more recently, by the University of 
Piemont (Montani et al 2006). They are also avail-
able in the Relex commercial tool. 

In DFT, special gates have been introduced, that 
complement the existing static fault tree gates. The 
most recent definition of these gates is given in 
(Montani et al 2006).  

 

Thanks to these gates, DFT improve the modeling 
capability of standard fault trees for non repairable 
systems. But their extension to repairable systems 
has never been considered so far, and the depend-
ences they allow to model are still limited, in spite of 
the introduction of four new kinds of gates.  

The object of this paper is to prove that BDMP 
constitute a very powerful generalization of dy-
namic fault trees, that does not suffer from these 
two limitations. 

BDMP are formally defined and their properties 
are proved in article (Bouissou, Bon 2003). They are 
implemented in the KB3 workbench, a set of tools 
developed by EDF (Bouissou 2005), and have been 
used in numerous studies of complex systems, espe-
cially repairable electrical systems. 

The paper is organized as follows: section 2 is a 
quick recall of the definition of BDMP and their 
main properties. Section 3 gives the BDMP equiva-
lent for each of the four special gates of dynamic 
fault trees described above, in order to prove that 
BDMP are a generalization of DFT. Section 4 con-
tains the BDMP solution of the test-case of article 
(Montani et al 2006), graphically input, and auto-
matically solved with the tools of the KB3 work-
bench. Finally, we enrich that test-case by supposing 
that the system is repairable, and we show that the 
repairable variant can be solved with no additional 
effort with these tools. 
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2 BDMP DEFINITION AND PROPERTIES 

Although BDMP may seem similar to dynamic fault 
trees, they are in fact quite different. Instead of add-
ing new kinds of gates, they assign a new semantics 
to the traditional graphical representation of fault 
trees, augmented only by a new kind of links (these 
links are called "triggers" and are represented by 
dotted arrows) and an equivalent of the so-called 
PAND gates of DFT.  

They enable the analyst to combine conventional 
fault trees and Markov models in a brand new way. 
BDMP have very interesting mathematical proper-
ties, which allow a dramatic reduction of combinato-
rial problems when they are converted into CTMC 
for their solving. Moreover, they allow to obtain par-
ticularly relevant qualitative information in the form 
of minimal sequences leading to the occurrence of 
the top event. 

The general idea of BDMP, as suggested by their 
name, is to associate a Markov process (which 
represents the behavior of a component or a subsys-
tem) to each leaf of a fault-tree. This fault-tree is the 
structure function of the system.  

What is really new with BDMP is that: 
- the basic Markov processes have two "modes", 

corresponding to the fact that the compo-
nents/subsystems that they model are required or 
are in standby (of course, they can also have 
only one mode, and the meaning of the modes 
may be different in some cases), 

- at any time, the choice of the mode of one of the 
Markov processes (unless it is independent) de-
pends on the value of a Boolean function of 
other processes. 

An extreme case is when the processes are inde-
pendent. This corresponds to a fault-tree, the leaves 
of which are associated to independent Markov 
processes. 

2.1 The elements of a BDMP 
A BDMP (F, r, T, (Pi)) is made of: a multi-top co-

herent fault-tree F, a main top event r of F, a set T 
of triggers, a set of "triggered Markov processes" 
Pi associated to the basic events (i.e. the leaves) of 
F, the definition of two categories of states for the 
processes Pi. 

A trigger is represented graphically with a dotted 
arrow. The origin and the target of a trigger can be 
any gate or basic event of F. However, two triggers 
must not have the same target. This means that it is 
sometimes necessary to create an additional gate 
(like G1 in Figure 1) whose only function is to de-
fine the origin of a trigger.  

Figure 1 is an example of graphical representation 
of all the notions of BDMP. In this example, we 
have a fault-tree with two tops: r (the main one) and 
G1. The basic events are P1, P2, P3, and P4: they 

can belong to one of the two standard triggered 
Markov processes defined below. There is only one 
trigger, from G1 to G2. 

 
Figure 1. A simple BDMP 

2.2 Definition of a "triggered Markov process" 
Such a process Pi is associated to each basic event i 
of the fault-tree. Pi is the following set of elements: 
 { }iiii fftZtZ 011010 ,),(),( →→  
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state space of )(tZ i
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kF of the state space Ak
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kF  will correspond to failure states of the 

component or subsystem modeled by the process Pi . 
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1 0→ ( )  is a probability distri-
bution on Ai

0 , such that if x F i∈ 1 , then 
Pr( ( ) )f x Fi i

1 0 0 1→ ∈ =  
Such a process is said to be "triggered" because it 

switches instantaneously from one of its modes to 
the other one, via the relevant transfer function, ac-
cording to the state of some externally defined Boo-
lean variable, called "process selector". The proc-
ess selectors are defined by means of triggers. The 
function of a trigger is to modify the mode of the 
processes associated to the leaves in the sub-tree un-
der its target when the event that is the origin of the 
trigger changes from FALSE to TRUE (or con-
versely). The exact definition of the semantics of a 
BDMP (in particular when there are several triggers) 
is too complex to be explained in the present paper, 
but it can be found in (Bouissou, Bon 2003). 

We give in § 2.3 and 2.4 the two standard trig-
gered processes which are most often used in 
BDMP. Another triggered Markov process, that is 
very useful for modeling multiphase systems, is de-
picted in (Bouissou et al. 2005).  
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2.3 The warm standby repairable leaf 
This process is used to model a component that can 
fail both when it is in standby and when it works 
(this mode corresponds to a process selector equal to 
1), but with different failure rates. This component 
can be repaired whatever its mode. When λs = 0 , the 
model represents in fact a cold standby repairable 
component, and when λs = λ, it represents a hot 
standby component. 

 

The transfer functions simply state that when the 
value of the process selector changes, the component 
goes from state Standby to Working (or vice-versa) 
or remains in Failure state with probability 1. 

{ }f S W F0 1 1 0→ = = =( ) Pr( ) ,Pr( ) ,   
{ }f F F W0 1 1 0→ = = =( ) Pr( ) ,Pr( )  
{ }f W S F1 0 1 0→ = = =( ) Pr( ) ,Pr( ) ,  

{ }f F F S1 0 1 0→ = = =( ) Pr( ) ,Pr( )  

2.4 The on-demand repairable failure leaf 
This model is used to represent an on-demand fail-
ure, that can happen (with probability γ) when the 
process selector changes from mode 0 to mode 1. 

{ }f W W F0 1 1→ = = − =( ) Pr( ) ,Pr( )γ γ ,   
{ }f F F W0 1 1 0→ = = =( ) Pr( ) ,Pr( )  

{ }f W W F1 0 1 0→ = = =( ) Pr( ) ,Pr( ) ,   
{ }f F F W1 0 1 0→ = = =( ) Pr( ) ,Pr( )  

3 BDMP EQUIVALENT OF THE SPECIAL DFT 
GATES 

3.1 The usual representation of these gates 

Figure 2. The three dynamic gates with special symbols 
 
In a DFT, SEQ gates, which we examine just below, 
can be represented by standard symbols for "and", 
"or", "k/n" gates and a special annotation to indicate 
that they are sequential. From this point, we will sys-

tematically use "k/n" gates whenever we do not want 
to precise the exact nature of a gate. 

3.2 Equivalent of the SEQ gate 
The SEQ gate, also known as the Sequence Enforc-
ing gate, forces events to occur in a particular order. 
The input events are constrained to occur in the left-
to-right order in which they appear under the gate. 
This means that the left-most event must occur be-
fore the event on its immediate right, which must 
occur before the event on its immediate right and so 
forth. 

This is easily represented in a BDMP with the 
kind of structure described in Figure 3. 

 
Figure 3. BDMP equivalent to a SEQ gate 

 
Supposing that all basic events of this structure 

(they are not represented on Figure 3 for a better 
generality) are of the type described in § 2.3 (with 
λs=0), such a structure forces the event K_N_1 to 
occur first, because in the initial state, only the 
events under this gate can be in mode 1. Then when 
K_N_1 takes the value TRUE, the events under 
K_N_2 switch to mode 1 (at least, some of them: it 
depends on the existence of additional triggers in 
this sub-tree) and thus can take the value TRUE. 
And so on. This quite simple structure is all what is 
needed for a non repairable system. For a repairable 
system, in most cases, a cascade of gates and trig-
gers like the one described in Figure 5, which has a 
slightly different behavior with regard to reconfigu-
rations after repairs, will be preferred. 

3.3 Equivalent of the PDEP gate 

Figure 4. BDMP equivalent to a PDEP gate 
 
The PDEP gate, also known as the Probabilistic De-
pendency gate, is not really a "gate", because it is 

S F W Fµ µ
λλs

Process 0 Process 1

W F W Fµ µ

Process 0 Process 1

k/n

K_N_3

k/n

K_N_2

k/n

K_N_1

k/n

SEQ_gate

K_N_2K_N_1

SEQ_gate

K_N_3

I  !

leaf_A

k/n

T

I  !

leaf_B

leaf_A

T leaf_B



not involved in the definition of the structure func-
tion of the DFT. It has one input called trigger event 
and can have one or more outputs called dependent 
events (in Figure 2 (b) the trigger event is called T 
and the dependent events are A and B). 
It is used to indicate that the trigger event causes the 
dependent events to happen, with a given probability 
(lower or equal to 1). The BDMP equivalent to such 
a gate is given in Figure 4. 
In this figure, leaf_A and leaf_B must be of the type 
described in §2.4. The gate T, and the leaves leaf_A 
and leaf_B of this BDMP excerpt can be attached 
anywhere in the structure function of the BDMP.  

3.4 Equivalent of Spare gates and events 
Spare gates and events are used to model cold, 
warm, and hot spares in the system. A Spare gate 
has the value TRUE if and only if all its inputs have 
the value TRUE; in that respect, it behaves like an 
"and" gate in the structure function. Spare gates are 
used in conjunction with Spare events: a special 
event type used to model spare usage. In Figure 2, 
the warm spare gate WSP has a primary input P and 
several spare event inputs S1…Sn. The meaning of 
such a structure is that when the failure of the com-
ponent modeled by P occurs, an available spare is 
taken from the set of spares to replace it. This can be 
done several times until all spares are used. Depend-
ing on the kind of spare (hot/warm), the failure rate 
associated to spare events as long as they represent 
spares in standby can be equal to/lower than the fail-
ure rate in function. In the case of cold spares, the 
standby failure rate is zero. The main interest of 
Spare gates resides in the fact that spare events can 
be inputs of several spare gates, thus modeling 
shared spares. Whenever a spare event has been 
"used" by a spare gate, it takes the value TRUE for 
other spare gates. 
It is difficult to describe the BDMP equivalent to 
Spare gates and events without their context when 
spare events are shared. The reader will find an ex-
ample in section 4. Assuming that the spare events 
of the Spare gate of Figure 2 (a) are not shared, the 
equivalent of that structure (for n =3) would be the 
sub-BDMP of Figure 5. In this figure, all leaves cor-
respond to the model depicted in 2.3, but the leaf P 
has a different icon to indicate that its parameter 
λs=0.   
If the system is not repairable, this structure can be 
replaced by a simpler one, similar to the structure 
depicted in Figure 3. The advantage of this more 
complicated structure is to ensure that a spare com-
ponent is in mode 1 if and only if the primary and all 
spare components with lower numbers are failed.  
All the spare components can have different charac-
teristics. Depending on the value of their parameter 
λs, they can represent cold, warm or hot spares or 
any combination of those. 
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Figure 5. BDMP equivalent to a Spare gate 

3.5 Equivalent of the PAND gate 
The PAND gate, also known as the Priority AND 
gate, is used to indicate that the output occurs if and 
only if all input events occur in a particular order. 
The difference between a PAND gate and a SEQ 
gate is that the PAND gate does not force its inputs 
to occur in a given order; these inputs remain inde-
pendent, and the PAND gate simply detects the fact 
that they have occurred in a given order. 

Since BDMP are meant to be models of repair-
able as well as non repairable systems, we had to 
take care of what should happen in the case of the 
repair of components appearing under a gate of that 
type. We have defined only PAND gates with two 
inputs i1 and i2, with the following behavior: the 
PAND gate value changes from FALSE to TRUE 
whenever i2 becomes TRUE while i1 is TRUE. As 
for the change from TRUE to FALSE (step down), a 
choice must be made by the analyst. Depending on 
the type of system to be modeled, he may choose 
one of the following options. The PAND gate steps 
down when: a) i1 steps down, b) i2 steps down, c) 
the first input (which may be i1 or i2) steps down, d) 
the last input steps down. Apart from that, the 
PAND gate of BDMP behaves like a standard "and" 
gate of a BDMP (in particular with regard to the use 
of triggers). 

If a test on the order of more than two events is 
needed, the analyst can use a cascade of PAND 
gates like in Figure 6. In this figure, if no repair is 
envisaged, the gate PANDi steps up only at the end 
of a sequence in which K_N_1, K_N_2,… K_N_i+1 
step up in this order. Many different behaviors can 
be specified for the effect of repairs, depending on 
the options chosen for each of the PAND gates. 
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Figure 6. A cascade of PAND gates in a BDMP 

4 EXAMPLE: STUDY OF A SYSTEM 

4.1 The system and its models 
In order to show a whole BDMP equivalent to a 
DFT, we have chosen to solve with the tools of the 
KB3 workbench the test case given in (Montani et al 
2006), because it has already been solved with two 
methods: the direct transformation of a DFT into a 
CTMC, and the transformation of the same DFT into 
a dynamic Bayesian network. Therefore, we will be 
able to compare our results with these previous reso-
lutions. 

Figure 7 gives the physical description of the sys-
tem to be studied. It is a computing system made of 
two computing modules, a bus and a shared spare 
memory M3. The computing module CMi (i=1 or 2) 
contains one processor Pi, one memory Mi and two 
hard drives: a primary drive Di1 and a backup Di2.    

Figure 7. Architecture of the computing system 
 
The backup disks, which are used only from time 

to time in order to replicate the contents of the pri-
mary disks, have a lower failure rate as long as they 
are in standby (they are warm spares for the primary 
disks). M3 is a warm shared spare for the memories 
M1 and M2. Its failure rate is also lower when it is 
in standby. The failure of the bus N or of the power 
supply PS leads to the loss of the whole system.   

Table 1 gives the reliability data for all compo-
nents. The two first columns of this table are taken 
from (Montani et al 2006). We have added a column 
with repair rates to define a variant of the test case, 
in which all components are repairable. 
 
Table 1.  Failure and repair rates of the components ______________________________________________  
Components Failure rate in 

operation λ 
Failure rate in 
standby λs 

Repair rate µ 

N 2.0E-9/h - 0.1/h 
P1, P2 5.0E-7/h - 0.2/h 
PS 6.0E-6/h - 10/h 
D11, D21 8.0E-5/h - 0.3/h 
D12, D22 8.0E-5/h 4.0E-5/h 0.3/h 
M1, M2 3.0E-8/h - 0.1/h 
M3 3.0E-8/h 1.5E-8/h 0.5/h 

 
Figure 8 gives a first BDMP modelling the sys-

tem; this one is easy to build and understand. 
 

Figure 8. First BDMP modeling the system of Figure 7 
 

However, this first model is not perfectly accu-
rate. Since the leaf M3 (meaning failure of M3) is an 
input to both gates corresponding to the loss of the 
memory for the computing modules, this model con-
siders that M3 can replace both M1 and M2, 
whereas in fact it can replace only one of them. 

So the idea to model the dependence due to this 
resource conflict is to represent the memories with a 
small Petri net (see Figure 10). In order to keep the 
model simple, we have modeled only the non repair-
able variant for the memories. In the initial state, the 
Petri net contains one token in the places named 
Spares, Mem1_OK, Mem2_OK. As soon as the fail-
ure of one of the memories occurs, the correspond-
ing instantaneous transition Replacement is fired, 
which destroys the token in the Spares place and 
prevents the other Replacement transition from be-
ing fired. Therefore only the first memory failure 
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can be compensated for by M3. The state of the 
memory functions is passed to the BDMP via the 
"Petri leaves" called M1_M3 and M2_M3. For ex-
ample, M1_M3 is true whenever there is a token in 
place Mem1_failure, which is tested via the test_1 
graphic component, in interaction (not graphically 
represented) with M1_M3. 

 

 
Figure 9. Second BDMP modeling the system of Figure 7 

 
Figure 10. The Petri net part of the second BDMP 

4.2 The results 
Table 2 gives the results we obtained with the above 
BDMP models,  compared with those stated in 
(Montani et al 2006). 

 
Table 2.  Results for the non repairable version of the system 

 
Mission 
time 

Dbnet – in 
(Montani et 
al 2006) 

Galileo – in 
(Montani et 
al 2006) 

BDMP + 
FIGSEQ 
(model 1) 

BDMP + 
FIGSEQ 
(model 2) 

1000h 6.0086E-3 6.0088E-3 6.00694E-3 6.00694E-3 
5000h 3.72379E-2 3.72413E-2 3.72411E-2 3.72411E-2 

 
The relative differences between the various es-

timations of the system unreliability are under 10-3. 
However, this is not a real proof of the quality of the 
different methods, because, as we can see from the 
output of FIGSEQ in appendix, which gives us the 
main failure sequences, the failure of the power sup-
ply is by far the most important cause of failure of 
the system. Thus many subtle differences in the 

modelling or in the probability calculations could be 
hidden by this large contribution.  

Now we can look at the results of the repairable 
version of the test case.  
Because of the imperceptible difference between our 
two BDMP models, we have chosen the first one to 
introduce repairs, because all it requires to get a 
model of the repairable system is to input the values 
for the repair rates in the leaves of the model (in-
stead of taking them all equal to zero). 
By doing so, we could obtain with FIGSEQ ap-
proximations (which are also upper bounds) of: 

• the asymptotic unavailability of the system: 
6.2001E-7 

• the unreliability at 5000h: 2.959E-2. 
The calculations take a fraction of a second on a 

standard PC. 
Again and in spite of the fact that we took a much 

shorter repair time for the power supply, it is this 
component which has by far the largest contribution, 
both for unreliability and unavailability.  

5 CONCLUSION 

We have shown in this article that BDMP are more 
flexible and more general than Dynamic Fault Trees. 
In particular, they are able to model easily repairable 
systems. In fact, the only situation in which their use 
is a little more complex than the use of DFT is when 
some shared spares must be taken into account. But 
thanks to the fact that BDMP can embed Petri nets 
to model special situations, a solution is always pos-
sible.   

The other important advantages of BDMP, that 
we could not recall in this article are the fact that 
they have a formal definition (therefore, whatever its 
complexity, a BDMP has a well defined semantics) 
and that they reduce considerably the combinatorial 
problems one encounters when using Markov 
chains.     
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Appendix:  The preponderant sequences output by FIGSEQ (for the second BDMP, mission time MT=5000h) 
 
 Aver. Dur.

Name Rate Class After init
[ failF OF PS] 6,00E-06 EXP 1,72E-02 0,00E+00 4,63E-01
[ failF OF D11] 8,00E-05 EXP
[ failF OF PS] 6,00E-06 EXP
[ failF OF D21] 8,00E-05 EXP
[ failF OF PS] 6,00E-06 EXP
[ failS OF D12] 4,00E-05 EXP
[ failF OF PS] 6,00E-06 EXP
[ failS OF D22] 4,00E-05 EXP
[ failF OF PS] 6,00E-06 EXP
[ failF OF D21] 8,00E-05 EXP
[ failF OF D22] 8,00E-05 EXP
[ failF OF D11] 8,00E-05 EXP
[ failF OF D12] 8,00E-05 EXP
[ failF OF D11] 8,00E-05 EXP
[ failF OF D12] 8,00E-05 EXP
[ failF OF D21] 8,00E-05 EXP
[ failF OF D22] 8,00E-05 EXP
[ failF OF D21] 8,00E-05 EXP
[ failF OF D11] 8,00E-05 EXP
[ failF OF D22] 8,00E-05 EXP
[ failF OF D12] 8,00E-05 EXP
[ failF OF D21] 8,00E-05 EXP
[ failF OF D11] 8,00E-05 EXP
[ failF OF D12] 8,00E-05 EXP
[ failF OF D22] 8,00E-05 EXP
[ failF OF D11] 8,00E-05 EXP
[ failF OF D21] 8,00E-05 EXP
[ failF OF D22] 8,00E-05 EXP
[ failF OF D12] 8,00E-05 EXP
[ failF OF D11] 8,00E-05 EXP
[ failF OF D21] 8,00E-05 EXP
[ failF OF D12] 8,00E-05 EXP
[ failF OF D22] 8,00E-05 EXP 5,34E-04 2,23E+04 1,43E-02

5,34E-04 2,23E+04 1,43E-02

5,34E-04 2,23E+04 1,43E-02

5,34E-04 2,23E+04 1,43E-02

5,56E-04 2,42E+04 1,49E-02

5,56E-04 2,42E+04 1,49E-02

1,46E-03 4,83E+03 3,93E-02

1,46E-03 4,83E+03 3,93E-02

2,92E-03 4,83E+03 7,85E-02

Contrib.

2,92E-03 4,83E+03 7,85E-02

Transitions Proba MT
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